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We investigate the nonlinear evolution of the Bales-Zangwill instability, responsible for the meandering of
atomic steps on a growing vicinal surface. We develop an asymptotic method to derive, in the continuous limit,
an evolution equation for the two-dimensional step flow. The dynamics of the crystal surface is greatly
influenced by the anisotropy inherent to its geometry, and is characterized by the coarsening of undulations
along the step direction and by the elastic relaxation in the mean slope direction. We demonstrate, using
similarity arguments, that the coalescence of meanders and the step flow follow simple scaling laws, and
deduce the exponents of the characteristic length scales and height amplitude. The relevance of these results to
experiments is discussed.
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I. INTRODUCTION

The homoepitaxial growth of semiconductor and metallic
vicinal surfaces, as revealed in experiments of molecular
beam epitaxy, is characterized by a variety of morphological
instabilities.1–4 The surface evolves by step flow driven by
the external flux and controlled by surface diffusion of ad-
sorbed atoms, attachment rates �Schwoebel barriers� and
elastic interactions. The interplay of different physical
mechanisms can lead to the formation of characteristic struc-
tures at the nanometer scale, in the form, for example, of
macroscopic bunches of steps, or periodic meanders of mon-
atomic steps. These spontaneously nanopatterned surfaces
can be useful as templates in an experimental two steps-
process, to obtain by subsequent heteroepitaxy, self-
organized arrays of quantum dots.5–7 The physical descrip-
tion of the epitaxial surface growth depends on the
characteristic lengths involved in the surface dynamics, from
atomic processes �surface reconstruction and faceting� to
gross macroscopic features �self-organization of
nanostructures�.8,9 At the mesoscopic scale of steps and ter-
races, the standard approach of Burton, Cabrera, and
Franck10,11 completed with appropriated expressions for the
equilibrium concentration and kinetic conditions, allows a
fairly complete description of the vicinal surface. However,
the macroscopic behavior of the vicinal surface, in particular
the longtime nonlinear evolution of step bunches and mean-
ders, can be more suitably accounted by a continuum model
in terms, for instance, of partial differential equations for the
surface height.12,13

In the continuum approach, initiated by Herring14 and
Mullins,15 the surface morphology is determined by the sur-
face energy ��S, which is anisotropic in general� and the
surface diffusion �characterized by the diffusion coefficient
DS�. It is easy to incorporate into this model other thermo-
dynamical contributions as, for instance, the elastic energy.16

To be more specific, let us consider the epitaxial growth of a
crystal under a flux F of atoms, relevant to molecular beam
epitaxy experiments.13,11,17 We denote a the height of an
atomic layer. The front shape is given by the function
h�x ,y , t� of the Cartesian coordinates �x ,y� and the time t.
The thermodynamical state of the system is specified by a

free energy functional F�h� of the crystal profile; the chemi-
cal potential per monolayer will be ��h�=a�F /�h — as in
the Cahn-Hilliard model.18 Therefore, the conservative dy-
namics of the interface satisfies the Mullins equation15

�

�t
h =

aDS

kBT
�2��h� + a3F , �1�

where kB is the Boltzmann constant and T the temperature.
Equation �1� is a mass conservation equation with the current
j�−���h�. In the simplest case, the chemical potential is
proportional to the surface curvature �=a3�S�, and using a
linear approximation, one obtains the evolution

�

�t
h = − BS�

4h + a3F , �2�

where we defined a mobility BS=a4DS�S /kBT. However, this
approach, based on a free energy functional, valid for near-
equilibrium conditions, prove to be insufficient when kinetic
processes become important. Indeed, the attachment of ada-
toms to steps modifies the mobility coefficients �like BS�,
and, coupled to external fluxes, can introduce new effects not
related to a chemical potential. In particular, the appearance
of step flow instabilities, bunching or meandering, cannot be
described, in the continuum limit, by an evolution equation
such as Eq. �1� with � derived from a variational functional.
One example is the Bales-Zangwill instability,19 which in the
weak nonlinear regime is described by the dimensionless
equation,20,21

�

�t
u = −

�2

�y2�u +
�2

�y2u + � �

�y
u�2	 , �3�

where u=u�y , t� is the rescaled step shape �y is the stepwise
direction�. The first term on the right hand side, which is
responsible for the instability, vanishes if the flux or the ki-
netic attachment barriers are absent. The third nonlinear term
is also proportional to the flux and cannot be derived from a
free energy functional. We investigate in this paper the influ-
ence of the vicinal surface anisotropy on the two-
dimensional dynamics of the meandering instability.

The meandering instability, first investigated by Bales and
Zangwill,19 results from the difference in the attachment ki-
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netics of adatoms approaching a step in opposite directions,
from the upper and lower terraces. The distinct neighborhood
of an adatom sitting just above or at a step implies a differ-
ence in the height of the energy barriers that introduces a
difference between the lower �+ and upper �− attachment
coefficients, the so-called Ehrlich-Schwoebel effect.22,23 Ne-
glecting evaporation effects the instability growth rate, as
mentioned above, is proportional to the flux and to the dif-
ference in kinetic coefficients ��q��F��+−�−�q2, where q is
the wavenumber of the perturbation. The original Bales-
Zangwill linear analysis was extended to take into account
various effects, such as desorption,24 kink barriers,25,26 diffu-
sion anisotropy,20 or elastic interactions.27,28 Although ex-
perimental measures of the instability growth rate remain to
be performed, there are detailed observations of step mean-
dering in metals29–31 and in semiconductors where it is often
associated with step bunching32–36 that reveal the longtime
nonlinear stage of the instability.

The longtime evolution of the Bales-Zangwill instability
was thoroughly investigated in the strong nonlinear regime,
by means of a continuous equation for the meander shape,
derived from a multiscale analysis of the adatom diffusion
model that incorporates the effect of line step diffusion �re-
lated to kink barriers�37–40 and the elastic interactions be-
tween steps27 �in a one-dimensional approximation�. This
strong nonlinear model reproduces at least qualitatively, the
meandering observed in metals,41 when desorption and
nucleation can be neglected. The two-dimensional effects,
together with mound formation, were studied using kinetic
Monte Carlo simulations.42–46

In the case of semiconductors, the coexistence of different
kinetic instabilities leads to two-dimensional morphologies
characterized by step bunches and meanders. In some cir-
cumstances, bunching and meandering is also present in
metals.31,47 Instability mechanisms operating in Si�001�,
based on the diffusion anisotropy that results from the sur-
face reconstruction of alternating terraces, were found for
bunching48 and meandering.20 One of the salient features of
these two-dimensional patterns is their coarsening: roughen-
ing amplitude and length scale follow growing power laws.
A unified continuum model of the bunching and meandering
instability is lacking, even if phenomenological models can
qualitatively account for some of its properties.42,47,49 The
difficulty is to systematically derive, from the mesoscopic
adatom diffusion model, a continuum limit that in addition to
the kinetic processes, takes into account the step elastic in-
teractions in its full two-dimensional form. In this paper, we
obtain such a model in the simplest physical situation, where
only the meandering instability is present and local step in-
teractions are considered. Under these assumptions, we can
develop a weak amplitude nonlinear expansion of the Bur-
ton, Cabrera, and Frank equations. Our two-dimensional
model of the meandering instability contrasts to previous
ones which treated the nonlinear evolution of an in-phase
pattern, thus reducing the problem to the �one-dimensional�
dynamics of a single step.

In the following, Sec. II we present the basic equations,
essentially the Burton, Cabrera, and Frank model. Section III
deals with the weak nonlinear expansion of the adatom dif-
fusion equations that allow us to derive in the continuum

limit a differential equation for the surface height. In Sec. IV,
we study the evolution of the system by the numerical inte-
gration of the vicinal surface equation, and we derive using a
self-similar solution, the asymptotic scaling laws for the am-
plitude, and characteristic lengths. Section V presents a dis-
cussion about a possible generalization of the model to in-
clude step bunching and a concluding summary.

II. STEP FLOW: ADATOM DIFFUSION EQUATIONS

The geometry of the vicinal surface schematically repre-
sented in Fig. 1 can be described by the set of curves x
=xn�y , t� representing the steps n=0,1 , . . . ,N at height z
=zn= �N−n�a. The terrace Tn of initial size l0 is bounded by
the upper step xn−1 and the lower step xn; its slope is then
−m=−a / l0. We define the external normal and curvature of
step n by

nn =
�1,− �yxn�

�1 + ��yxn�2�1/2 , �n = −
�yyxn

�1 + ��yxn�2�3/2 , �4�

respectively.
In the absence of an external flux F, there is an equilib-

rium concentration Ceq,n of adatoms on the surface. This con-
centration, which is in general not uniform, depends on the
curvature and elastic interactions of steps; it is determined by
the surface chemical potential �n�y , t�=�n

�c�+�n
�e�

Ceq,n = C0e�n/kBT, �5�

at temperature T. C0 is the adatom concentration correspond-
ing to the reference vicinal surface, the one consisting of
equidistant straight steps. The first contribution �n

�c� to the
chemical potential takes into account the step curvature, and
is given by the Gibbs-Thomson relation,

�n
�c� = ��s�n, �6�

with �s the step stiffness ��=a2 the atomic area�. The second
contribution �n

�e� results from the dipole moments created by
the broken bonds at each step, and depends on the distance x
between steps �see, for instance, Marchenko and Parshin or
Duport et al.�50,51

�n
�e� = ��s�gn+1 − gn�, gn =

l0
3

�xn − xn−1�3 , �7�

where �s=4�1−�2�ms
2 /	El0

3 has the dimensions of an �elas-
tic� energy per unit surface, � and E are the Poisson ratio and

xn�1

xn

xn�1

y

z

Tn

Tn�1

Sn�1

Sn

FIG. 1. �Color online� Schematic geometry of the vicinal sur-
face, formed by a set of terraces Tn separated by atomic steps Sn at
x=xn�y , t�.
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the Young modulus, respectively, and ms is the force dipole
moment. We assume that step n only interacts with its near-
est neighbors; this approximation is justified in the case of
the rapidly decreasing 1 /x3 dipole interaction. In fact, sum-
ming over all steps would not change the form of the elastic
repulsion in the continuum limit, but only renormalize the
dimensional coupling constant �s; as demonstrated by
Xiang,52 the ratio between the infinite series and one term of
the sum �7� is 	2 /6. Under usual experimental conditions,
the energies associated to the step stiffness and the elastic
repulsion are much smaller than the thermal energy, so the
equilibrium concentration at step n can be written as,

Ceq,n = C0�1 + �l0�n + ��gn+1 − gn�� , �8�

where we introduced the nondimensional parameters

� = ��s/kBTl0, � = ��s/kBT . �9�

It is worth noting that the “equilibrium” concentration
changes with the geometry of the vicinal surface through the
curvature of steps and their separation; it is used, in fact, as a
reference to compute the supersaturation.

In the presence of an external flux, the evolution of the
adatom concentration Cn=Cn�x ,y , t� is well described by a
quasistationary diffusion equation, as originally proposed in
the model of Burton, Cabrera, and Franck10

D�2Cn�x,y,t� + F = 0, �10�

where D is the adatom diffusion coefficient, and the source
term F is the deposition flux �number of atoms per unit time
and unit surface�. In Eq. �10�, we neglected the time deriva-
tive by assuming a weak flux regime F
D /�l0

2. Under mo-
lecular beam epitaxy experimental conditions, with F a few
monolayers per minute, this “adiabatic” approximation of the
diffusion equation is usually satisfied. Also, the processes of
evaporation and, eventually, nucleation of surface atoms are
disregarded, their characteristic times being much longer
than the typical flow step time 1 /Fl0

2.
At steps, the boundaries of a terrace, adatoms are attached

with a velocity rate �− if they come from the upper terrace,
or �+ if they come from the lower one. The Bales-Zangwill
meandering instability19 appears in the case where �+��−,
the Ehrlich-Schwoebel effect.22,23 These parameters charac-
terize the attachment kinetics that controls the flux of ada-
toms, then fixing their concentration at the terrace boundary

Dnn−1 · �Cn = �+�Cn − Ceq,n−1�, x = xn−1, �11�

for the upper step and

Dnn · �Cn = − �−�Cn − Ceq,n�, x = xn, �12�

for the lower one. The step flow results from the balance
between the diffusion fluxes Eqs. �11� and �12� at each step.
The normal velocity is given by

Vn = �Dnn · ��Cn+1 − �Cn�, x = xn. �13�

Equations �10�–�13� form a complete system from which we
can determine the relevant physical parameters. It is conve-
nient to introduce a reduced concentration,

c =
C − C0

C0
, �14�

and nondimensional parameters related to the flux and the
attachment coefficients,

f =
Fl0

2

DC0
, � =

�l0

D
, �15�

as well as to normalize lengths with l0 �the terrace width� and
time with l0

2 /�DC0, as derived from the normal velocity
�13�. Using these parameters, we can write the set of equa-
tions in nondimensional form

�2cn�x,y,t� + f = 0, �16�

nn−1 · �cn = �+�cn − ��n−1 − ��gn − gn−1��, at x = xn−1,

�17�

nn · �cn = − �−�cn − ��n − ��gn+1 − gn��, at x = xn,

�18�

Vn = nn · ��cn+1 − �cn�, at x = xn. �19�

Equations �16�–�19� describe at a mesoscopic level the dif-
fusion of adatoms on a terrace n of a vicinal surface, driven
by the external flux f and controlled by the attachment kinet-
ics �, the stiffness �, and the elasticity � of the bounding
steps.

III. VICINAL SURFACE EQUATIONS IN THE
CONTINUUM LIMIT

A stationary train of straight steps, advancing at constant
velocity xn=n+ ft, is an unstable solution of the step flow. A
perturbation ��y ,n , t� of the step profile,

xn = n + ft + ��y,n,t� , �20�

induces a modification of the terrace adatom concentration in
the form

cn�x,y,t� = cn�x + ft� + ��x,y,n,t� , �21�

where the first term is the stationary parabolic concentration

c0�x� = −
x2f

2
+

f�2 + �−���+x + 1�
2��+ + �+ + �+�−�

, − 1 � x � 0,

�22�

solution of Eq. �16� with the boundaries �17� and �18� in the
case of straight steps, ��y ,n , t�=0. Note that, as the flux f
tends to zero, the step velocity and the concentration vanish.

We are interested in obtaining the growth rate of the me-
andering instability in the long wavelength, continuum limit.
In this case, it is sufficient to consider the in-phase mode
with

��x,y,n,t� = ��x,n,t�eiqy , �23�

and
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��y,n,t� = ��t�ei�kn+qy�, �24�

where ��x ,n , t� and ��t� are small amplitudes, and �k ,q� is
the wavevector of the perturbation. The long wavelength
limit is obtained by making a development in powers of the
wavevector �up to the fourth order�. To compute the con-
tinuum limit, we introduce the notation �n= �n+1�−n for the
separation between two steps. In this limit, both lengths, the
steps separation l0 and the step height a, tend to zero, but the
slope m=a / l0 must be kept constant. Therefore, we formally
have,

xn1 = n  �n + ��y,n  �n,t� , �25�

and assume that � is a smooth function of n, in the limit
�n→0. The elastic term at x=xn in the boundary conditions
becomes

�n2

��n + ��n + �n� − ��n��3 −
�n2

��n + ��n� − ��n − �n��3 ,

�26�

and a similar expression for the boundary at x=xn−1, where
the numerator in �n2 ensures the correct limit when �n
→0 �we omitted the dependence in y and t�. We know that
the meandering instability is driven by the flux f and the
difference in attachment coefficient �=�+−�−. We replace
Eqs. �20� and �21� in the diffusion equations and retain the
lowest order in �n, f , and � to get the real part of the dis-
persion relation

� =
f�

4�
q2 − �q4 −

3

2
��k4 −

1

2
��� + 6��k2q2, �27�

and the imaginary part

� =
f

6
k3 +

f

2�
kq2, �28�

where �=�− and the amplitudes grow as � , ��e�t−i�t. The
first term in Eq. �27� is the destabilizing one, it is propor-
tional to the product f�. If the long wavelength limit is in-
troduced by replacing k , q→�k , �q, in order to keep all
terms, we must assume that, near the instability threshold,
the parameters can be considered small such that

f → �f , � → �3�, � → �2�, � → �2� , �29�

where the last two relations guarantee the balance of the
instability growth term with the stiffness and elastic relax-
ation terms. Using these relations, all terms in � become
order O��6�, and order O��4� in �, suggesting the introduc-
tion of two time scales, �6t �instability and relaxation� and
�4t �dispersive waves�.

To summarize, the weak amplitude expansion of the step
shape must be of the form,

xn�y,t� = n + ����y,n;�6t,�4t� , �30�

and that of the concentration,

cn�x,y,t� = 

m

�mcm�x,�y,n;�6t,�4t� , �31�

where the variable x is itself a function of � through the
boundary conditions, and the scaling �29� is assumed. The
equations of the model, become in terms of the slow
variables

�xxc�x,y,n� + �2�yyc�x,y,n� + �f = 0, �32�

with

�1,− �2�y��y,n − �n�� · ��xc�x,y,n�,��yc�x,y,n��
�1 + �4��y��y,n − �n��2�1/2

= �� + �3���c�x,y,n� − �2�G��n − �n�

+ �5�
�yy��y,n − �n�

�1 + �4��y��y,n − �n��2�3/4	 , �33�

at x=n−�n+���y ,n−�n�, and

�1,− �2�y��y,n�� · ��xc�x,y,n�,��yc�x,y,n��
�1 + �4��y��y,n��2�1/2

= − ��c�x,y,n� − �2�G��n�

+ �5�
�yy��y,n�

�1 + �4��y��y,n��2�3/4	 , �34�

at x=n+���y ,n�, where

G��n� =
�n2

��n + ���y,n + �n� − ���y,n��3

−
�n2

��n + ���y,n� − ���y,n − �n��3 , �35�

and the normal velocity,

Vn =
�1,− �2�y��y,n��

�1 + �4��y��y,n��2�1/2 · ��x,��y��c�x,y,n + �n�

− c�x,y,n��x=n+���y,n�, �36�

where the implicit dependence on the time variable is under-
stood �time derivatives appear only in the explicit expression
of the normal velocity�. Using the expansion �30� and �31�
together with the Taylor series in �n of ��y ,n�n�, one
may solve Eq. �32� with the boundary conditions �33� and
�34� to obtain a series in � of the normal velocity �36�; a few
terms of this series are

Vn = �2f��n�n� + �n21

6
�nnn�� − �3�n23

2
���nnnn�

+ �4�n2 f

2�
�nyy� − �5�n�3� + �n

1

2
����nnyy�

− �7�n��yyyy� − �7�n2� f�

4�
�yy� +

1

4�
�yy��y��2	 + h.o.t,

�37�
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where the higher order terms �h.o.t�, terms having higher
order derivatives or powers in the step shape amplitude
��y ,n�, are shown to be irrelevant in the continuum limit.
Note that in Eq. �37�, the derivatives of ��y ,n� with respect
to n are themselves functions of the small parameter �. This
can be made explicit using the representation of the surface
in terms of the height function h�x ,y , t�, satisfying the com-
patibility condition,

F�n,y,t� = zn + h�xn�y,t�,y,t� = 0, �38�

which signifies that h=const. at a height level zn
= �N−n�a / l0, x=xn�y , t�=n+���y ,n , t�. In this representation,
the steps are the level contours of the surface z=h.

Using the derivatives of F�n ,y , t� with respect to n and y,
one obtains the derivatives of � in terms of derivatives of h.
Typical derivatives are

�nxn =
m

�xh
, �yxn = −

�yh

�xh
, �nnxn = −

m2�xxh

��xh�3 , �39�

etc. Moreover, the height itself deviates slightly from the
mean slope m �in the continuum long wave approximation�
h�x ,y , t�=−mx+�u��x ,y , t�. Keeping terms up to order �6

�even number of derivatives� and �4 �odd number of deriva-
tives� that correspond to the two time scales, one obtains the
normal velocity expressed in terms of the reduced height
u�x ,y , t�, with �x ,y , t� the slow variables and with �n=�=1,

�tu = − �xxxxu − A�xxxu − �yy�u + �yyu + ��yu�2 + B�xu

+ C�xxu� , �40�

where

A = � f

�
�1/2� 23�

37��3�1/4

,

B = � f

�
�1/2� 2

3�3��
�1/4

,

C = � 6�

��
�1/2

+ ���

6�
�1/2

,

and where we used rescaled quantities in units of length Lx,
Ly �in both directions�, time T, and amplitude U,

Lx =
�24�3���1/4

�f��1/2 , Ly = �4��

f�
�1/2

,

T = 16�� �

f�
�2

, U =
4m��

f
,

and a moving frame with velocity ft �this eliminates the first
order derivative in x�. Equation �40� describes the evolution
of the height fluctuations u�x ,y , t� around the mean slope m,
driven by the meandering instability �the term in −�yyu�; it
takes into account the relaxation processes due to elastic step
interactions �the terms having an even number of x deriva-
tives�, and to step stiffness �the −�yyyyu term�; the term pro-
portional to A is related to the dispersive nature of the step
flow; eventually, the nonlinear term −�yy��yu�2 is responsible

of the coarsening dynamics at long times. This equation is
the base of our numerical study of the morphological evolu-
tion of the vicinal surface under the Bales-Zangwill instabil-
ity.

IV. ANISOTROPIC COARSENING OF
THE VICINAL SURFACE

We integrate numerically Eq. �40� using a pseudospectral
method for space discretization and the exponential time dif-
ferencing Runge-Kutta method for time stepping.53 Periodic
boundary conditions are imposed. The typical space grid is
10242 with �x=1l0Lx=1l0Ly, and the time step �t
=0.01�l0

2 /�DC0�T. Resolution and size of the simulation are
enough to obtain reliable statistical data. Throughout, we use
units lx= l0Lx, ly = l0Ly, t0= �l0

2 /�DC0�T, and u0= l0U, for
lengths, times, and heights, respectively.

We show the evolution of the vicinal surface at different
times in Fig. 2. The horizontal axis is in the stepwise direc-
tion y, it gives the shape of the meanders, and the vertical
one is in the terrace direction x, it follows downhill the mean
slope, the third axis represent the fluctuations of the surface
shape u�x ,y , t�. We observe that the height scale, as well as
the size of the structures steadily increase in time, which are
characteristics of a coarsening dynamics. The surface devel-
ops in time an anisotropic pattern with parabolic meanders
spanning in the y direction together with complex fluctua-
tions in the x direction. In order to visualize the shape change
in the surface in both directions, we represent in Fig. 3 a cut
of the height �for example, at the edge of the box� at fixed y
and x. Coarsening is observed along both directions, al-
though the coarsening dynamics differs between step flow �x
direction� and meanders �y direction�. In the y direction, the
meanders are composed by a series of parabolalike segments
reminiscent to the evolution of the one-dimensional mean-
dering instability21 �Fig. 3�b��. In particular, at late times, the
system instead of tending toward a quasi-one-dimensional
in-phase state with large meanders as would be dictated by
the sole linear instability, a full two-dimensional state with
persisting fluctuations remains �cf. Figure 2�d��.

Using data from the time evolution one can compute the
roughness

w�t� = ��u�x,y,t�2� − �u�2;

�in our case the mean value �u�=0 vanishes� it is represented
in the graph of Fig. 4, in logarithmic scales. We can fit the
long time roughness by a power law w� t� with exponent
�=1.06.

In order to characterize the inherent anisotropic evolution
of the surface morphology, it is convenient to define charac-
teristic lengths along both directions, perpendicular �x,

�x
−2 =

�dkdqk2ukq2

�dkdqukq2
, �41�

and parallel �y to the steps,
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�y
−2 =

�dkdqq2ukq2

�dkdqukq2
, �42�

where ukq�t� is the spatial Fourier transform of u�x ,y , t�. Fig-
ure 5 shows the behavior of �x,y�t� and the power law fits. At
long times, we obtain exponents of �x=0.25 and �y =0.52,
for �x and �y, respectively. This behavior can be correlated
with the evolution of the power spectrum of the height fluc-
tuations

Px�k� =
�dqukq�t�2

�dkdqukq�t�2
,

and

Py�q� =
�dkukq�t�2

�dkdqukq�t�2
,

as shown in Fig. 6. The spectrum of the terrace-wise fluctua-
tions is rich at small wavevectors and shift toward the long

wavelength direction in time; the stepwise fluctuations are
peaked around a well-defined wavelength �reminiscent of the
initial most unstable mode�, and as the coarsening develops
the peak shift toward the long wavelength direction.

It is straightforward to explain the power laws observed in
the numerical simulation of Eq. �40�; a simple similarity ar-
gument suffices. Equation �40� satisfies the conservation
relations,

d

dt
� dxdyu = 0, �43�

the mean value of u is constant, and

d

dt
� dxdy

u2

2
=� dxdy���yu�2 − ��xxu�2 − ��yyu�2 − C��xyu�2� ,

�44�

the amplitude grows by the instability term preferentially in
regions of strong gradients; therefore, as in the one-

(a) (b)

(c) (d)

FIG. 2. �Color online� Surface height evolution, �a–d� t=1000, 2000, 3000, and 5350. The system size is 10242.
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dimensional case,20 the amplitude increase is controlled by
the balance of the instability with the nonlinear term. On the
other hand, we note that at long times the dispersive wave
terms are dominated by the instability, relaxation and nonlin-
ear terms. Indeed, linear terms give an increase in the char-
acteristic wavelength x ,y� t1/3, faster than the relaxation
length evolution x ,y� t1/4. Therefore, the effective long time
equation contains essentially the driving instability term
which competes with the nonlinear one, and the slowest re-
laxation term in the forth derivative of x

�tu = − �xxxxu − �yy�u + ��yu�2� . �45�

Putting the similarity ansatz,

u�x,y,t� = t�U� x

t�x
,

y

t�y
� , �46�

into Eq. �45� one obtains the power law exponents �=1, and
�x=1 /4, �y =1 /2, close to the numerical results �cf. Fig. 5�.
We confirm that this scaling is compatible with Eq. �44�,

where the time derivative and the first two terms of the right
hand side are on the same order, they increase linearly in
time, while the two last terms rapidly become negligible
���yyu�2�const. and ��xyu�2� t1/2�.

We note that the long time effective dynamics described
by Eq. �45� is independent of the physical parameters. It
accepts, as the original Eq. �40�, particular one-dimensional
solutions u=u�x , t� or u=u�y , t�. However, the equation is
not separable �the product function U�x ,y�=Ux�x�Uy�y� is
not a solution, because of the nonlinear term�, showing that
the long time behavior is essentially two-dimensional. The
fact that the characteristic exponents of the meander coars-
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(a)

(b)

FIG. 3. �Color online� Coarsening dynamics in the x direction
�a� and in the y direction �b�. From bottom to top, line-cuts of the
height u at t=1000, 2000, 3000, and 5350.
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�
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FIG. 4. �Color online� Roughness as a function of time. Loga-
rithmic plot showing the power law in w� t.
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�b�
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1
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ln�t�

ln
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x�
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�c�

FIG. 5. �Color online� Coarsening lengths as a function of time.
�a� The characteristic length increases faster in the meandering di-
rection, �y � t1/2, curve labeled �y, and fit in �b�, than in the step
flow direction, �x� t1/4, curve labeled �x, and fit in �c�.

(a)

(b)

FIG. 6. �Color online� One-dimensional power spectrum �a� in
the x vicinal slope direction, and �b� in the y stepwise direction.
Three times are shown: 1000 �blue, right side�, 3000 �red, middle�,
and 5350 �black, left side�.
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ening are similar to the ones of the in-phase case explains the
reminiscence of the observed behavior to the one-
dimensional case. In addition, as can be inferred from the
partial spectra of Fig. 6, the time dependence of the charac-
teristic length scale of the step flow �x is related, not to
structures of �x size, but to the steady shift in the spectrum
toward small wavenumbers. This behavior contrasts with the
y-direction spectrum, dominated by the characteristic size �y,
of the parabolic meanders. Therefore, an appropriate descrip-
tion of the meander dynamics can be given by the coales-
cence of neighboring parabolic meanders, but at variance to
the one-dimensional in-phase case, perturbed by the persis-
tent step flow fluctuations. �It is worth mentioning, that add-
ing a white noise term to Eq. �3� does not change its scaling
behavior, as we found from direct numerical computations.�

V. CONCLUSION

In this paper, we devised a method to obtain the evolution
equation of a vicinal surface from the continuum limit of the
adatoms diffusion microscopic model. We demonstrated that
the anisotropy inherent to a vicinal surface induces different
time scales for the amplitude and characteristic lengths par-
allel or perpendicular to the steps. As an interesting conse-
quence, an initial out-of-phase perturbation of the straight
steps does not tend at long times toward the �most unstable�
in phase pattern even if this symmetric mode is the most
unstable one. Dephasing persists due to the slower coarsen-
ing in the step flow direction, �x� t1/4, than the coarsening of
meanders along the steps direction, �y � t1/2.

Although the present model can describe the weak non-
linear regime of the meandering instability under the condi-
tion that the step flow is stable, it would be important to
generalize Eq. �40� in order to include the step bunching
instability. The two instabilities can be present simulta-
neously even in homoepitaxy, in the case of anisotropic dif-
fusion as in Si�001�.48,20 Experimental evidence of the per-
sistence of two-dimensional patterns is presented in the
atomic force image of Fig. 7, where we see a typical Si�001�
vicinal surface grown by molecular beam epitaxy, after the
deposition of 300 monolayers.54 In particular, at this late
stage of the surface evolution, the form of the Fourier spec-
trum �inset� is somewhat similar to the one of Fig. 6, but
with the roles of kx and ky inverted. A possible form of the
bunching-meandering instability equation is,

�th = L̂ − �2�h2 − � � · ��xh � h� , �47�

where �= ��x ,�y� and the linear operator L is in Fourier
space, of the form

L̂ = ak2 − k4 + bq2 − q4 + ik�Ak2 + Bq2� − Ck2q2, �48�

with a ,b constants that control the bunching and meandering
instability growth rates, respectively, and � ,A ,B ,C=const.
depending on the physical parameters, in particular, � must
be proportional to the flux. Indeed, the nonlinear term is a
generalization of the F�x�1 /hx� term, proportional to the flux,
appearing in the unstable step flow. Derivation of Eq. �47�
from a microscopic model deserves further investigations.
More generally, the method presented in this paper, valid in
the weak amplitude, long wavelength approximation, applied
here to the meandering instability, can be adapted to more
general cases, notably to the case of heteroepitaxial growth
of thin films on vicinal surfaces.
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